Connectivity of orientations of 3-edge-connected graphs

نویسندگان

چکیده

We attempt to generalize a theorem of Nash-Williams stating that graph has k-arc-connected orientation if and only it is 2k-edge-connected. In strongly connected digraph we call an arc deletable its deletion leaves digraph. Given 3-edge-connected G, define Frank number f(G) be the minimum k such there exist orientations G with property every edge becomes in at least one these orientations. are interested finding good upper bound for number. prove f(G)?7 graph. On other hand, show 3 attained by Petersen Further, better bounds more restricted classes graphs establish connection Berge–Fulkerson conjecture. also deciding whether all edges given subset can become NP-complete.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orientations of infinite graphs with prescribed edge-connectivity

We prove a decomposition result for locally finite graphs which can be used to extend results on edge-connectivity from finite to infinite graphs. It implies that every 4k-edge-connected graph G contains an immersion of some finite 2k-edge-connected Eulerian graph containing any prescribed vertex set (while planar graphs show that G need not contain a subdivision of a simple finite graph of lar...

متن کامل

On the edge-connectivity of C_4-free graphs

Let $G$ be a connected graph of order $n$ and minimum degree $delta(G)$.The edge-connectivity $lambda(G)$ of $G$ is the minimum numberof edges whose removal renders $G$ disconnected. It is well-known that$lambda(G) leq delta(G)$,and if $lambda(G)=delta(G)$, then$G$ is said to be maximally edge-connected. A classical resultby Chartrand gives the sufficient condition $delta(G) geq frac{n-1}{2}$fo...

متن کامل

Z3-connectivity of 4-edge-connected 2-triangular graphs

A graph G is k-triangular if each edge of G is in at least k triangles. It is conjectured that every 4-edge-connected 1-triangular graph admits a nowhere-zero Z3-flow. However, it has been proved that not all such graphs are Z3-connected. In this paper, we show that every 4-edge-connected 2-triangular graph is Z3-connected. The result is best possible. This result provides evidence to support t...

متن کامل

Circumference of 3-connected claw-free graphs and large Eulerian subgraphs of 3-edge-connected graphs

The circumference of a graph is the length of its longest cycles. Results of Jackson, and Jackson and Wormald, imply that the circumference of a 3-connected cubic n-vertex graph is Ω(n), and the circumference of a 3-connected claw-free graph is Ω(n). We generalise and improve the first result by showing that every 3-edge-connected graph with m edges has an Eulerian subgraph with Ω(m) edges. We ...

متن کامل

Strongly 2-connected orientations of graphs

We prove that a graph admits a strongly 2-connected orientation if and only if it is 4-edge-connected, and every vertex-deleted subgraph is 2-edge-connected. In particular, every 4-connected graph has such an orientation while no cubic 3-connected graph has such an orientation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2021

ISSN: ['1095-9971', '0195-6698']

DOI: https://doi.org/10.1016/j.ejc.2020.103292